Hyperelastic Materials: A Method for Estimation of the Material Parameters of Hyperelastic Material Models in Relation to the Linear Elastic Material Model
Given a particular form of the strain energy function, we present here a quick method by which the material parameters can be related to the shear modulus and the bulk modulus of a linear elastic material.
Shear Modulus
The material parameters of a hyperelastic material model can be related to the shear modulus of an elastic material as follows. First, a simple shear state of deformation is assumed:
![Rendered by QuickLaTeX.com \[ F=\left(\begin{array}{ccc} 1 & \alpha & 0 \\ 0 & 1 & 0 \\ 0& 0& 1 \end{array} \right) \]](https://engcourses-uofa.ca/wp-content/ql-cache/quicklatex.com-d73130a3f68ebab7358447ad2dcd7f5e_l3.png)
The engineering shear strain in this case is equal to
and
. The matrix
is equal to:
![Rendered by QuickLaTeX.com \[ F^TF=\left(\begin{array}{ccc} 1 & \alpha & 0 \\ \alpha & 1+\alpha^2 & 0 \\ 0& 0& 1 \end{array} \right) \]](https://engcourses-uofa.ca/wp-content/ql-cache/quicklatex.com-8d0d729aa27905a53f13570085b202ff_l3.png)
The first and second invariants of
are:
![Rendered by QuickLaTeX.com \[ \begin{split} &I_1=3+\alpha^2\\ &I_2=\frac{1}{2}\left(I_1(F^TF)-I_1(F^TFF^TF)\right)=3+\alpha^2 \end{split} \]](https://engcourses-uofa.ca/wp-content/ql-cache/quicklatex.com-84e3c18176fb16e255920b8162d41ea4_l3.png)
The following are examples of some of the compressible and incompressible material models listed above:
![Rendered by QuickLaTeX.com \[ \begin{split} &W_1=C_{10}\left(\overline{I_1} -3\right)+\frac{1}{D}(J-1)^2\\ &W_2=C_{10}\left(\overline{I_1} -3\right)+C_{01}\left(\overline{I_2}-3\right)+\frac{1}{D}(J-1)^2\\ &W_3=\mu_1(I_1(U^2)-3)\\ &W_4=\frac{\mu_1}{2}(I_1(U^2)-3)+\frac{\mu_2}{2}(I_2(U^2)-3) \end{split} \]](https://engcourses-uofa.ca/wp-content/ql-cache/quicklatex.com-4e7d6d25c547d93bd0ad9e6b6b1305b6_l3.png)
For each of these material models, the corresponding Cauchy stress matrix has the form:
![Rendered by QuickLaTeX.com \[ \begin{split} & \sigma_1= \left(\begin{array}{ccc} \frac{4}{3}C_{10}\alpha^2 & 2C_{10}\alpha & 0 \\ 2C_{10}\alpha & -\frac{2}{3}C_{10}\alpha^2 & 0 \\ 0& 0& -\frac{2}{3}C_{10}\alpha^2 \end{array} \right)\\ & \sigma_2= \left(\begin{array}{ccc} \frac{2}{3}(2C_{10}+C_{01})\alpha^2 & 2(C_{10}+C_{01})\alpha & 0 \\ 2(C_{10}+C_{01})\alpha & -\frac{2}{3}(C_{10}+2C_{01})\alpha^2 & 0 \\ 0& 0& -\frac{2}{3}(C_{10}+2C_{01})\alpha^2 \end{array} \right)\\ & \sigma_3= \left(\begin{array}{ccc} 2\mu_1(1+\alpha^2)+p & 2\mu_1\alpha & 0 \\ 2\mu_1\alpha & 2\mu_1+p & 0 \\ 0& 0& 2\mu_1+p \end{array} \right)\\ & \sigma_4= \left(\begin{array}{ccc} \mu_1(1+\alpha^2)+\mu_2(2+\alpha^2)+p & (\mu_1+\mu_2)\alpha & 0 \\ (\mu_1+\mu_2)\alpha & \mu_1+2\mu_2+p & 0 \\ 0& 0& \mu_1+2\mu_2+p \end{array} \right) \end{split} \]](https://engcourses-uofa.ca/wp-content/ql-cache/quicklatex.com-4a06f9a2596cb1d4251f1dee9afe0891_l3.png)
For linear elastic materials, the shear stress component
and the engineering shear strain component
are related by the relationship:
. By investigating the component
in the above matrices and by setting
, the relationship between the shear modulus
and the given material parameters are as follows:
- For material 1:

- For material 2:

- For material 3:

- For material 4:

Bulk Modulus
The material parameters of a hyperelastic material model can be related to the bulk modulus of an elastic material as follows. First, a spherical state of deformation is assumed:
![Rendered by QuickLaTeX.com \[ F=\left(\begin{array}{ccc} \alpha & 0 & 0 \\ 0 & \alpha & 0 \\ 0& 0& \alpha \end{array} \right) \]](https://engcourses-uofa.ca/wp-content/ql-cache/quicklatex.com-e018f499ca5a97575e4b4059db5e3c79_l3.png)
. The matrix
is equal to:
![Rendered by QuickLaTeX.com \[ F^TF=\left(\begin{array}{ccc} \alpha^2 & 0 & 0 \\ 0 & \alpha^2 & 0 \\ 0& 0& \alpha^2 \end{array} \right) \]](https://engcourses-uofa.ca/wp-content/ql-cache/quicklatex.com-5d0f956d9d7594462f31450f7ee1457c_l3.png)
The first and second invariants of
are:
![Rendered by QuickLaTeX.com \[ \begin{split} &I_1=3\alpha^2\\ &I_2=\frac{1}{2}\left(I_1(F^TF)-I_1(F^TFF^TF)\right)=3\alpha^4 \end{split} \]](https://engcourses-uofa.ca/wp-content/ql-cache/quicklatex.com-c38d687e23e1a9c397a0dc1820eb4bac_l3.png)
The following are examples of some of the compressible material models listed above:
![Rendered by QuickLaTeX.com \[ \begin{split} &W_1=C_{10}\left(\overline{I_1} -3\right)+\frac{1}{D}(J-1)^2\\ &W_2=C_{10}\left(\overline{I_1} -3\right)+C_{01}\left(\overline{I_2}-3\right)+\frac{1}{D}(J-1)^2 \end{split} \]](https://engcourses-uofa.ca/wp-content/ql-cache/quicklatex.com-5463b35f691d58d60829643dbfb9dd78_l3.png)
For each of these material models, the Cauchy stress has the form:
![Rendered by QuickLaTeX.com \[ \begin{split} &\sigma_1=\frac{2}{D}(\alpha^3-1)I\\ &\sigma_2=\frac{2}{D}(\alpha^3-1)I \end{split} \]](https://engcourses-uofa.ca/wp-content/ql-cache/quicklatex.com-2adabb8416deae6ffdba6a053e9b716f_l3.png)
For linear elastic materials, the hydrostatic stress component
is related to the engineering volumetric strain
by the relationship
. In the deformation described in this problem, the volumetric strain is equal to
, therefore, an estimate of the material constant
for the above materials is given as:
![]()
