Calculus: Matrix Calculus
In this section, we show some useful formulas that are used in the derivation of the forms of the stress matrices of hyperelastic materials.
Statement 1
Let
be a deformation gradient satisfying
. Let
be the square of the right stretch tensor of the polar decomposition of the deformation gradient. Let
and
be the first and second invariants of
respectively, which for simplicity, will be denoted by
and
. Then:
![Rendered by QuickLaTeX.com \[ \begin{split} &\frac{\partial I_1}{\partial F}=2F\\ &\frac{\partial I_2}{\partial F}=2I_1F-2FF^TF\\ &\frac{\partial J}{\partial F}=JF^{-T} \end{split} \]](https://engcourses-uofa.ca/wp-content/ql-cache/quicklatex.com-c7e5786589ebb14fe5bb1aee3435fefb_l3.png)
Note that the first two equalities hold for any matrix
. The last formula is referred to as the Jacobi formula.
PROOF:
For the first statement, we start by noting that the first invariant of
can be written using the components of
as follows:
![]()
By taking the derivative of
with respect to the arbitrary component
we get:
![]()
Therefore,
![]()
The second inequality can be obtained similarly, by writing
in terms of the components of
:
![]()
Therefore:
![]()
The second term can be evaluated using component form as follows:
![Rendered by QuickLaTeX.com \[\begin{split} \frac{\partial I_1(F^TFF^TF)}{\partial F_{ij}}&=\frac{\partial F_{kn}F_{kl}F_{ml}F_{mn})}{\partial F_{ij}}=F_{il} F_{ml} F_{mj}+F_{in} F_{mj} F_{mn}+F_{kn} F_{kj} F_{in}+F_{kj} F_{kl} F_{il}\\ &=4F_{ik} F_{lk} F_{lj} \end{split} \]](https://engcourses-uofa.ca/wp-content/ql-cache/quicklatex.com-feea284bdff71a2b101eff5d6c0ce830_l3.png)
i.e.,
![]()
Therefore, the derivative of the second invariant of
has the following form:
![]()
The Jacobi formula can be shown by first writing the expression of the determinant of a matrix in component form as follows:
![]()
If
is invertible, which is the case when
represents a deformation gradient, then it is enough to show the following equivalent form of the Jacobi formula:
![]()
To prove the above, we start by the left hand side in component form:
![Rendered by QuickLaTeX.com \[ \begin{split} \left(\frac{\partial J}{\partial F}F^T\right)_{nm}&=\frac{\partial J}{\partial F_{no}}F_{mo}=\frac{\partial \varepsilon_{ijk}F_{1i}F_{2j}F_{3k}}{\partial F_{no}}F_{mo}\\ &=(\varepsilon_{ijk} \delta_{1n} \delta_{io} F_{2j} F_{3k} ) F_{mo}+(\varepsilon_{ijk} F_{1i} \delta_{2n} \delta_{jo} F_{3k} ) F_{mo}+(\varepsilon_{ijk} F_{1i} F_{2j} \delta_{3n} \delta_{ko} ) F_{mo}\\ &=\varepsilon_{ojk} F_{mo} F_{2j} F_{3k} \delta_{1n}+\varepsilon_{iok} F_{1i} F_{mo} F_{3k} \delta_{2n}+\varepsilon_{ijo} F_{1i} F_{2j} F_{mo} \delta_{3n} \end{split} \]](https://engcourses-uofa.ca/wp-content/ql-cache/quicklatex.com-d61a295f82bff1df3421c082ef15c909_l3.png)
Each term of the above equation represents the triple product of three row vectors in
. Since the triple product of linearly dependent vectors is zero, the three terms can be rewritten as follows:
![Rendered by QuickLaTeX.com \[ \begin{split} &\varepsilon_{ojk}F_{mo}F_{2j}F_{3k}=\varepsilon_{ojk}F_{1o}F_{2j}F_{3k}\delta_{1m}\\ &\varepsilon_{iok}F_{1i}F_{mo}F_{3k}=\varepsilon_{iok}F_{1i}F_{2o}F_{3k}\delta_{2m}\\ &\varepsilon_{ijo}F_{1i}F_{2j}F_{mo}=\varepsilon_{ijo}F_{1i}F_{2j}F_{3o}\delta_{3m} \end{split} \]](https://engcourses-uofa.ca/wp-content/ql-cache/quicklatex.com-cb5bf402cdd5efe6e2683c024ef2b7e4_l3.png)
Substituting in the above equation leads to:
![Rendered by QuickLaTeX.com \[ \begin{split} \left(\frac{\partial J}{\partial F}F^T\right)_{nm}&=\varepsilon_{ojk}F_{1o}F_{2j}F_{3k}\delta_{1m}+\varepsilon_{iok}F_{1i}F_{2o}F_{3k}\delta_{2m}+\varepsilon_{ijo}F_{1i}F_{2j}F_{30}\delta_{3m}\\ &=\varepsilon_{ijk}F_{1i}F_{2j}F_{3k}(\delta_{1n}\delta_{m1}+\delta_{2n}\delta_{m2}+\delta_{3n}\delta_{m3})\\ &=\varepsilon_{ijk}F_{1i}F_{2j}F_{3k}(\delta_{nm})\\ &=J\delta_{nm} \end{split} \]](https://engcourses-uofa.ca/wp-content/ql-cache/quicklatex.com-33146fba50f62eadcee6ccde62fdb0a2_l3.png)
Therefore,
![]()
Statement 2 (Component Form)
Let
be a deformation gradient satisfying
. Let
be the square of the right stretch tensor of the polar decomposition of the deformation gradient. Let
be the singular value decomposition of the deformation gradient where
are rotation matrices, the columns of
are the eigenvectors of
and
is a diagonal matrix with entries:
![Rendered by QuickLaTeX.com \[ D=\left(\begin{array}{ccc} \lambda_1 & 0 & 0\\ 0 & \lambda_2 & 0\\ 0 & 0 & \lambda_3 \end{array} \right) \]](https://engcourses-uofa.ca/wp-content/ql-cache/quicklatex.com-260f7b837d8002ffc37ef028e3511ff9_l3.png)
Then:
![Rendered by QuickLaTeX.com \[ \begin{split} &\frac{\partial \lambda_1}{\partial F_{ij}}=\sum_{k=1}^3Q_{k1}R_{ik}Q_{j1}\\ &\frac{\partial \lambda_2}{\partial F_{ij}}=\sum_{k=1}^3Q_{k2}R_{ik}Q_{j2}\\ &\frac{\partial \lambda_3}{\partial F_{ij}}=\sum_{k=1}^3Q_{k3}R_{ik}Q_{j3} \end{split} \]](https://engcourses-uofa.ca/wp-content/ql-cache/quicklatex.com-3ef55a4cef376fa8427b7cde72265c3b_l3.png)
PROOF:
Rearranging the singular value decomposition equality:
![Rendered by QuickLaTeX.com \[ D=\left(\begin{array}{ccc} \lambda_1 & 0 & 0\\ 0 & \lambda_2 & 0\\ 0 & 0 & \lambda_3 \end{array} \right)=Q^TR^TFQ \]](https://engcourses-uofa.ca/wp-content/ql-cache/quicklatex.com-5e39c73245121d066daeefbeace77aec_l3.png)
Therefore, using component form we have:
![Rendered by QuickLaTeX.com \[ \begin{split} &\lambda_1=\sum_{k,l,m=1}^3Q_{k1}R_{lk}F_{lm}Q_{m1}\\ &\lambda_2=\sum_{k,l,m=1}^3Q_{k2}R_{lk}F_{lm}Q_{m2}\\ &\lambda_2=\sum_{k,l,m=1}^3Q_{k3}R_{lk}F_{lm}Q_{m3} \end{split} \]](https://engcourses-uofa.ca/wp-content/ql-cache/quicklatex.com-8a11177f5dbfb03ec2994686d94d06ef_l3.png)
By taking the derivatives with respect to the general component
:
![Rendered by QuickLaTeX.com \[ \frac{\partial \lambda_1}{\partial F_{ij}}=\frac{\partial \left(\sum_{k,l,m=1}^3Q_{k1}R_{lk}F_{lm}Q_{m1}\right)}{\partial F_{ij}}=\sum_{k,l,m=1}^3Q_{k1}R_{lk}F_{lm}Q_{m1}\delta_{li}\delta_{mj}=\sum_{k=1}^3Q_{k1}R_{ik}Q_{j1} \]](https://engcourses-uofa.ca/wp-content/ql-cache/quicklatex.com-5d918b0d80a839245a0518b9f2fa3b2d_l3.png)
Similarly,
![Rendered by QuickLaTeX.com \[ \begin{split} &\frac{\partial \lambda_2}{\partial F_{ij}}=\sum_{k=1}^3Q_{k2}R_{ik}Q_{j2}\\ &\frac{\partial \lambda_3}{\partial F_{ij}}=\sum_{k=1}^3Q_{k3}R_{ik}Q_{j3} \end{split} \]](https://engcourses-uofa.ca/wp-content/ql-cache/quicklatex.com-967ce033a48f0d0f9a5873b314a424e9_l3.png)
Statement 2 (Tensor Form):
In the previous statement, the derivatives of the eigenvectors with respect to the components of
were shown to be functions of the components of
and
. Since the columns of
are the eigenvectors of
then the derivatives are functions of the components of the eigenvectors. The complexity of the component form hides the simplicity of the actual relationship and so the tensor product form will be used to show how simple the relationship actually is. In addition, we are going to also show the simple relationship of the derivatives of the eigenvectors of
with respect to the tensor
as follows:
Let
be the Right Cauchy-Green Deformation Tensor and
be the Left Cauchy-Green Deformation Tensor. Let
and
be the eigenvalues of
and
. Let
, and
be the eigenvectors of
and
, and
be the eigenvectors of
. Show that
(no summation):
![]()
![]()
PROOF:
First, assume that
is a scalar valued function of
. Therefore:
![]()
By taking the derivative of
with respect to
, we get the second order tensor:
![]()
Setting
we have:
![]()
Since the eigenvalues of
are independent of each other and of the eigenvectors, we have:
![]()
Therefore:
![]()
The same statement applies for
and
. Therefore
:
![]()
The same proof can be used to show that
:
![]()
Equivalence of the Component and Tensor Forms of Statement 2:
Note that since the columns of
in the statement above are the eigenvectors of
. Also, we have
. Also,
. Therefore:
![]()
which is the component form obtained above.
Statement 3:
Let
be a deformation gradient satisfying
. Let
be the square of the right stretch tensor of the polar decomposition of the deformation gradient. Let
. Let
be the first and second invariants of
respectively.
Then:
![Rendered by QuickLaTeX.com \[ \begin{split} &\frac{\partial \overline{I_1}}{\partial F}=J^{-\frac{2}{3}}\left(2F-\frac{2I_1}{3}F^{-T}\right)\\ &\frac{\partial \overline{I_2}}{\partial F}=J^{-\frac{4}{3}}\left(2I_1F-2FF^TF-\frac{4I_2}{3}F^{-T}\right) \end{split} \]](https://engcourses-uofa.ca/wp-content/ql-cache/quicklatex.com-d939d76090678dbc41a8b8ee37279663_l3.png)
Where I_1,I_2 are the first and second invariants of F^TF respectively.
PROOF:
From the properties of the first invariant of a matrix:
![]()
Therefore:
![]()
Similarly:
![]()
Therefore:
![Rendered by QuickLaTeX.com \[\begin{split} \frac{\partial \overline{I_2}}{F}&=\frac{\partial \overline{I_2}}{I_2}\frac{\partial I_2}{F}+\frac{\partial \overline{I_2}}{J}\frac{\partial \overline{J}}{F}=J^{-\frac{4}{3}}(2I_1F-2FF^TF)-\frac{4I_2}{3}J^{-\frac{7}{3}}(JF^{-T})\\ &=J^{-\frac{4}{3}}\left(2I_1F-2FF^TF-\frac{4I_2}{3}F^{-T}\right) \end{split} \]](https://engcourses-uofa.ca/wp-content/ql-cache/quicklatex.com-952b6a764dc69d97c929ee95fd757a4e_l3.png)
Statement 4:
Let
be a deformation gradient satisfying
. Assume the components of
are functions of a variable
, then:
![]()
NOTES:
- If the variable
represents time, then the relationship between
and the trace of the velocity gradient
is obtained (see this section). - While the statement is intended for a matrix whose determinant is positive, a more general statement applicable to a square-matrix valued function, “Jacobi’s formula”, can be derived in a similar fashion.
PROOF:
The section on the velocity gradient provides two proofs for the particular relationship between the velocity gradient and
. These two are based on the books by Ogden and P. Chadwich. The two approaches are repeated here for a general parameters
.
The first approach relies on the component form in a cartesian coordinate system.
can be expressed in terms of the components of
as follows:
![]()
![Rendered by QuickLaTeX.com \[ \frac{\partial J}{\partial \alpha} = \sum_{i,j,k=1}^3\varepsilon_{ijk}\left(\frac{\partial \frac{\partial x_1}{\partial \alpha}}{\partial X_i}\frac{\partial x_2}{\partial X_j}\frac{\partial x_3}{\partial X_k}+\frac{\partial x_1}{\partial X_i}\frac{\partial \frac{\partial x_2}{\partial \alpha}}{\partial X_j}\frac{\partial x_3}{\partial X_k}+\frac{\partial x_1}{\partial X_i}\frac{\partial x_2}{\partial X_j}\frac{\partial \frac{\partial x_3}{\partial \alpha}}{\partial X_k}\right) \]](https://engcourses-uofa.ca/wp-content/ql-cache/quicklatex.com-ccb49780981f5c96f74fb542e3bfe007_l3.png)
![]()
![Rendered by QuickLaTeX.com \[ \sum_{i,j,k=1}^3\varepsilon_{ijk}\frac{\partial x_a}{\partial X_i}\frac{\partial x_a}{\partial X_j}\frac{\partial x_b}{\partial X_k}=\sum_{i,j,k=1}^3\varepsilon_{ijk}\frac{\partial x_a}{\partial X_i}\frac{\partial x_b}{\partial X_j}\frac{\partial x_b}{\partial X_k}=\sum_{i,j,k=1}^3\varepsilon_{ijk}\frac{\partial x_a}{\partial X_i}\frac{\partial x_b}{\partial X_j}\frac{\partial x_a}{\partial X_k}=0 \]](https://engcourses-uofa.ca/wp-content/ql-cache/quicklatex.com-9390009dcf5566225dd606d2a414142f_l3.png)
![Rendered by QuickLaTeX.com \[ \begin{split} \frac{\partial J}{\partial \alpha} & = \sum_{i,j,k=1}^3\varepsilon_{ijk}\left(\frac{\partial \frac{\partial x_1}{\partial \alpha}}{\partial x_1}\frac{\partial x_1}{\partial X_i}\frac{\partial x_2}{\partial X_j}\frac{\partial x_3}{\partial X_k}+\frac{\partial \frac{\partial x_2}{\partial \alpha}}{\partial x_2}\frac{\partial x_1}{\partial X_i}\frac{\partial x_2}{\partial X_j}\frac{\partial x_3}{\partial X_k}+\frac{\partial \frac{\partial x_3}{\partial \alpha}}{\partial x_3}\frac{\partial x_1}{\partial X_i}\frac{\partial x_2}{\partial X_j}\frac{\partial x_3}{\partial X_k}\right)\\ &=J\sum_{i=1}^3\left(\frac{\partial\frac{\partial x_i}{\partial \alpha}}{\partial x_i}\right)=J\sum_{i,j=1}^3\frac{\frac{\partial x_i}{\partial \alpha}}{\partial X_j}\frac{\partial X_j}{\partial x_i} \end{split} \]](https://engcourses-uofa.ca/wp-content/ql-cache/quicklatex.com-7953ab1064f10a99dac4f4ba64cb5f02_l3.png)
The second approach is adopted from the book by P. Chadwich and relies on the expressions shown in the matrix invariants section. Let
be three linearly independent vectors. The derivative of
can be expressed as follows:
![Rendered by QuickLaTeX.com \[ \begin{split} \frac{\partial J}{\partial \alpha} &=\frac{\frac{\partial F}{\partial\alpha}a\cdot(Fb\times Fc)+Fa\cdot(\frac{\partial F}{\partial\alpha}b\times Fc)+Fa\cdot(Fb\times \frac{\partial F}{\partial\alpha}c)}{a\cdot(b\times c)}\\ &=\frac{\frac{\partial F}{\partial\alpha}F^{-1}Fa\cdot(Fb\times Fc)+Fa\cdot(\frac{\partial F}{\partial\alpha}F^{-1}Fb\times Fc)+Fa\cdot(Fb\times \frac{\partial F}{\partial\alpha}F^{-1}Fc)}{a\cdot(b\times c)}\\ &=\frac{\frac{\partial F}{\partial\alpha}F^{-1}Fa\cdot(Fb\times Fc)+Fa\cdot(\frac{\partial F}{\partial\alpha}F^{-1}Fb\times Fc)+Fa\cdot(Fb\times \frac{\partial F}{\partial\alpha}F^{-1}Fc)}{Fa\cdot(Fb\times Fc)}\frac{Fa\cdot(Fb\times Fc)}{a\cdot(b\times c)}\\ &=J \mbox{Trace}\left(\frac{\partial F}{\partial\alpha}F^{-1}\right) \end{split} \]](https://engcourses-uofa.ca/wp-content/ql-cache/quicklatex.com-af6cd3a4041c01b8dcea64f00e33cb73_l3.png)
